Gravitational Radiation Recoil from Merging Black Hole Binaries

Dale Choi

NASA Goddard Space Flight Center Greenbelt, MD

Collaborators

- J. Centrella, J. Baker, M. Koppitz, J. van Meter (NASA/GSFC)
- M. C. Miller (Univ. of Maryland)

Outline

- Introduction
- Methodology
- Results

Introduction

- Barring very special symmetries, merging massive black hole binary systems will emit gravitational waves (GWs) that are asymmetrical.
- Asymmetric emission of GWs can impart kick to the merger remnant due to linear momentum conservation.
- High kick velocity can unbound the merged black hole from the center of the host structure, thus can have significant astrophysical implications on
 - growth scenarios of massive black holes
 - growth and retention of intermediate-mass black holes in dense stellar clusters
 - effects of displacement of merged black holes on the structure of galatic nuclei.

Introduction

- Kick calculations have a long history with earlier attempts by Peres(1962); Bekenstein(1973); Fitchett(1983); Wiseman (1992).
- Recent closed-form studies include [mass ratio ρ]
 - ▶ Favata, Hughes, Holz (2004): BH Perturbation; e.g. $\rho \sim 0.127$, $v_{kick} \sim$ 20–200 km/s.
 - \blacksquare Blanchet, Qusailah, Will (2005): Post-Newtonian up to 2PN order; e.g. $\rho\sim0.38,$ $v_{kick}\sim$ 200–300 km/s.
 - ▶ Damour, Gopakumar (2006): PN e.g. $\rho \sim 0.38$, $v_{kick} \sim$ 74 km/s.
- Main weakness of the closed-form studies is in uncertainties of kick estimates beyond "ISCO (Innermost stable circular orbit)".
- These results strongly indicate contributions to kick up to ISCO is very small (\sim a few tens of km/s) and over 90% of the kick comes beyong ISCO to plunge/merger.

Introduction

- Therefore, accurate estimates of kicks requires full numerical relativity simulations.
- Recent numerical studies include
 - Campanelli (2005): Numerical Relativity + perturbative hybrid. $\rho \sim 0.5$, $v_{kick} \sim 100-380$ km/s.
 - ▶ Herrmann, Shoemaker, Laguna (2006): Full numerical relativity. Estimates only give lower limits and only for $\rho=$ 1.0 0.85. $v_{kick}\sim$ 33km/s for $\rho=0.85$.

Methods: HAHNDOL code

- Full numerical relativity code based on a version of BSSN system of equations.
- Start with a quasi-circular initial data following the scheme similar to the one used for equal mass inspiral.
- To calculate kick, first calculate waveforms carried away by GWs during the merger.
- Use NP Weyl tensor component Ψ_4 to analyse (outgoing) gravitational wave content.
- Harmonic decomposition

$$\Psi_4(r,\theta,\phi,t) = \sum_{lm} A_{lm}(r,t)_{-2} Y_{lm}(\theta,\phi)$$

$$A_{lm}(r,t) = \int \Psi_4(r,\theta,\phi,t)_{-2} Y_{lm}(\theta,\phi) d\Omega$$

Hahndol code

• Given Ψ_4 , one can calculate, e.g., E, P_i .

$$E_{GW} = \frac{r^2}{4\pi} \int \int_{\Omega} |\int_{-\infty}^t dt' \Psi_4(t', r, \theta, \phi)|^2 d\Omega dt$$

$$P_{GW}^i = \frac{r^2}{4\pi} \int \int_{\Omega} \frac{x^i}{r} |\int_{-\infty}^t dt' \Psi_4(t', r, \theta, \phi)|^2 d\Omega dt$$

• $M_{merged}V_{kick} + P_{GW} = P_{init}$. We choose $P_{init} = 0$ in our initial data.

Results

- Start with NON-spinning cases.
- Mass ratio $\rho = M_1/M_2 = 0.667(, 0.5)$.
- ullet Harmonic mode analysis of waveforms indicates that dominant contribution comes from L=2, M=2 and L=3, M=3 mixing.
- Initial data: L/M = 4.1M, 6.2M with M total (initial) ADM mass.
- Resolutions used: $h_f = M/32, M/40, M/48$
- Solution
- Gravitational waveforms
- Kick estimates

Results: Solution

• Snapshots of grid structure: Re(χ) (χ = Coulomb scalar) on z=0 plane at t=5M,13M,20M,36M,45M,72M [MOVIE]

Results: Gravitational Waveforms

$$\Psi_4(L=2, M=2 \& L=3, M=3)$$

 $\rho = 0.667, d_{init}/M \sim 6.2, h_f = M/40$

Results: kick estimates for $\rho = 0.667$

- $\rho = 0.667, d_{init}/M = 6.2$
- $h_f = M/32, M/40$ (different gauge conditions used.)

Results: Kick estimates for $\rho = 0.667$

• "kick" =
$$v(t) = \frac{1}{M} \sqrt{\left(\int^t \frac{dP_x(t')}{dt'} dt'\right)^2 + \left(\int^t \frac{dP_y(t')}{dt'} dt'\right)^2}$$

• Kick velocity ~ 105 km/s $\pm 10\%$.

(Time-shifted so that the pick of amplitude of waveforms match.)

time (M)

APS April Meeting, Dallas, TX, APRIL 24, 2006 - p.13/13